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C A L C U L A T I O N  OF V I B R A T I O N S  OF T H I N  P L A T E S  B Y  P A R T I T I O N I N G  

I N T O  E L A S T I C A L L Y  C O N N E C T E D  U N D E F O R M A B L E  U N I T S  

L. M. Minkevich UDC 539.3 

A mathematical model of a thin plate in the form of a system of elastically connected 
undeformable rectangular units is proposed and substantiated. With necessary additions, the 
basic statements of  the method can be eztended to the case of  a thick plate. 

I n t r o d u c t i o n .  A mathematical model of a thin plate in the for.m of a system of elastically connected 
undeformable rectangular units is particularly attractive owing to its simplicity and the clear physical meaning. 
This approach has found application in rod calculations [1]. As far as plates are concerned, one can refer to 
[2]; however, the technique, described in that paper, may be considered only as a first approximation, because 
a number of fundamental problems, including the problem of accuracy, have not yet been solved. Now we 
have managed to solve all the major problems. In the present paper, the new results, the approaches, and the 
general representation of the method are given. 

1. Basic  S t a t e m e n t s .  A thin plate of constant thickness is considered; any way of attachment is 
suitable; point masses can be rigidly attached to the plate; and the orthotropic anisotropy is possible. The plate 
can have any shape; cuts and notches are admissible. For simplicity, we consider the case where the sections 
of the contour and the cuts are the segments of straight lines parallel to any of two mutually perpendicular 
directions. 

The plate is divided into N identical rectangular 
other and to the base by springs of horizontal and vertical 

The rigidity of vertical-action springs is denoted 

units with the sides dx and dy, connected to each 
action (the plate plane is assumed to be horizontal). 
by C, and that  of horizontal-action springs by S. 

There are some varieties of springs of both types (Figs. 1 and 2). Figure 1 shows a part of the plate with the 
unit and generalized-coordinate numbers, and Fig. 2 shows the right edge of one of the units. The springs 
that connect the adjoining sides of the neighboring units have the rigidities C1 and S1. The rigidities of the 
springs connecting the corners of the units that are in contact with each other only at their corners are C2 
and $2 (here there are two springs of the type $2, one of which acts in the direction of X, and the other in the 
direction of Y). The rigidities of the springs that connect the edge of the unit to the edges of five "neighbors 
of its neighbors" and are parallel to these edges are $3, $4, and $5 (the units that  are in contact at their 
corners are also called "neighbors"). Horizontal-action springs are arranged as two layers which are 1/6 of 
their thickness from the upper and lower planes of the plate. For symmetry, the springs of one layer duplicate 
those in the other; at tachment points of each pair of springs S can be chosen, to a certain extent, arbitrarily. 
The attachment points of the vertical-action springs are shown in Fig. 2. 

The rigidities of the horizontal-action springs (the technique of their determination is described in 
Sec. 3) are as follows: 

SI - 1.28333KD, $2 = - K ~ D ,  $3 = 0.I0833KD, 

$4 = -0.16666KD, $5 = 0.09375KD, 
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Fig. 1. Part  of the plate (the upper line indicates the numbers of the unit, 
and the lower line refers to the coordinate numbers). 
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Fig. 2. Springs on the right edge of unit No. 7: 
figures indicate the numbers of the units to which 
the second ends of the springs are "attached," h is 
the thickness of the plate, and d is the length of 
the edge of the square unit. 

where K = (3 - a2)/(ah2), K'  = (1.45 - 1.2833a2)/(ah2), D = Eh3/[12(1 - v2)], a = b/s is the ratio of the 
length of the unit to its width (by the width, we mean the size of the edge of the unit to which the given 
spring is attached), E is Young's modulus; v is the Poisson ratio, and h is the thickness. 

The rigidities of the verticM-action springs are as follows: 

C1 = 2(3 - a2)(s/b3)D, C2 = (2/sb)D. 

The possibility of negative values is noteworthy, but the sum of the rigidities is of the same order: C1 + C2 = 
6Ds/b 3 and S1 + $2 = 2.4D/(ah2). 

At the boundary, C1 and C2 are multiplied by the coefficient G2, S1 and $2 by the coefficient G1, and 
$3, $4, and $5 by the coefficients G3 and G4. The technique of calculating the rigidities and the coefficients 
G is presented below. The units into which the plate is partitioned are numbered from 1 to N; numbering is 
continuous. The generalized coordinates are as follows: q(1), q(4), q(7), . . .  are the displacements of the units' 
centers; q(2), q(5), q(8), . . .  are the rotations about the X axis, and q(3), q(6), q(9), . . .  are the rotations 
about the Y axis. For example, for.the unit with number L, the q coordinates have the numbers 3(L - 1) + 1, 

3(n - 1) + 2, and 3(L - 1) + 3. 
2. P o t e n t i a l -  a n d  K i n e t i c - E n e r g y  M a t r i c e s .  F r e q u e n c y  E q u a t i o n .  To construct a potential- 

energy matrix B, it suffices to have the values of the rigidities of the springs and the coordinates of their 
attachment points. For example, we need to derive an expression for the component B(1, 1). We give a virtual 
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displacement q(1) = 1 to the system and other displacements are q(i) = O. Then we equate two potential 
energy expressions for this virtual displacement: 

1-1 = 1/2EB(i,k)q(i)q(k), I-I = 1/2EC(p, rn)g2(p, rn), 

where C(p, m) is the rigidity of the spring that  connects the points p and m; g(p, m) is the difference in the 
displacements of the points p and m in the direction of spring action. We find B(1, 1). Clearly, B(1 + 3(i - 
1), 1 +3 ( i  - 1)) = B(1, 1), where i = 1 ,2 ,3 , . . .  ,N,  except the i which are the numbers of the boundary units. 
For boundary units, the components  B(i, k) are found independently. We give some examples of the values of 
the components for a square unit  with edge d (see Fig. 1): 

B(19,28) = 8(19,34)  = B(19,10) = B(19,4) = B(4,52) = . . . =  - C 2 ,  

B(19,19) = B(16,16) = . . .  = 8 -C1  + 4 -  C2, 

B(21,21) = (8/9)h 2.  S1 + (13/9)C1 �9 d 2 + C2. d 2 + (S/9)h 2. $2 + (4/9)h2($3 + 2- $4 + 2 .  $5) . . . .  

It is much easier to construct  a kinetic-energy matrix. The  matrix is diagonal in the absence of fixed point 
masses, and the components  are the masses and moments of inertia of the units. For example, for unit No. 5 
the components are A(13, 13) = M, A(14, 14) -- Iz, and A(15, 15) = Iy. If a point load is placed at any point 
of this unit, the subprogram of the matrix A is supplemented by several rows which indicate its mass and the 
moments of inertia. 

With matrixes A and B, we can solve the frequency equation 

BQ = w2AQ, (2.1) 

where w is the eigenfrequency and Q is the matrix of oscillation shape. 
3. T e c h n i q u e  for  D e t e r m i n i n g  t h e  R ig id i t i e s  o f  S p r i n g s .  The  rigidities of the springs that  model 

the elasticity of the system are presented in Sec. 1. For rigidity calculations, the initial requirement is that  
the frequency equation (2.1) coincides, within the limit (when the dimensions of the unit  tend to zero), with 
the continuous-plate equation: 

A A W  = pw2hW/D, (3.1) 

where W(x, y) are the vertical displacements of the plate points and p is the density of the plate material. We 
note that  the same equation holds true for derivatives of W with respect to x and y; subsequently, we shall 
imply precisely this circumstance if formula (3.1) is concerned. 

The calculation is performed as follows. We write Eq. (2.1) for a concrete unit.  Let it be unit  No. 7 
(Fig. 1) without point masses: 

X;B(19, k)q(k) = w2A(19,19)q(19), 

~B(20, k)q(k) = w2A(20, 20)q(20), 

X~8(21, k)q(k) = w2A(21, 21)q(21). 

(3.2) 

(3.3) 

(3.4) 

Let there be a common coordinate system x, Y for the plate, and the axes be parallel to the edges of the units. 
Let the coordinates of the center of unit  No. 7 be x and y; the coordinates of the center of unit  No. 4 are 
(.~ + dz, y - dy), and those of the center of unit No. 13 are (x + 2dx, y - 2dy), etc. We introduce the following 
notation: q(19) = W(x, y), q(20) = U(z, y), q(21) = V(x, y), q(22) = W(x  + dx), q(35) = U(x + dx, y + dy), 
etc. Also, we shall present all the generalized coordinates, except q(19), q(20), and q(21), as a power series with 
respect to powers of dx and dy (with allowance hereinafter that  V = -OW/Ox and U = OW/Oy); for example, 
q(34) = w + w ,  dx + dy + l /2( W,, + 2 dx dy + Wyy dye)+ 1/ 6( dxS +3W,,y dr+...)+ . . . .  

We substitute these representations and the values of B(i, k), expressed through the still unknown C I , . . . ,  $5, 
into (3.2)-(3.4). Here we assume that  C1 and S1 are proportional to the width of the unit  and inversely 
proportional to the cubic length and the length of the unit,  respectively (according to the physical meaning 
of these rigidities, which simulate the cutting force and the tangential stress, respectively); the preliminary 
assumptions concerning other  rigidities are not made. In the resultant equations, we require vanishing the 
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coefficients at the zeroth-third powers dx and dy in (3.2) and at the zeroth-fourth powers in (3.3) and (3.4): 
in addition, we require that the coefficients at W4,0 and 14/0,4 be unity in (3.2) and the coefficient at W2,2 be 
equal to two, and the coefficients at the other fourth derivatives be zero; we also impose similar requirements 
on the coefficients at the fifth derivatives in Eqs. (3.3) and (3.4). After appropriate calculations, we obtain 
the values of the rigidities presented in Sec. 1, Eq. (3.2) for a quadratic unit with edge d taking the form [3] 

A A W  + M6(d/,~) 2 + Ms(d/)~) 4 + Mlo(d/)~) 6 + . . .  = pw2hW/D (3.5) 

and Eqs. (3.3) and (3.4) taking the form 

AAW1,0 + Ls(d/)~) 2 + Ls(d/)~) 4 + Llo(d/)~) 6 + . . . .  pw2hWl,o/D. (3.6) 

Here ~ is the wavelength with frequency w. The coefficients Lk and Mk tend to zero as 1/(s Thus, the 
rigidities are chosen so that, with the dimension of the unit tending to zero, Eq. (2.1) takes the form of the 
continuous-plate equation (3.1). Note that the interaction at the corners of the units and also the "long-range 
action," i.e., the interaction with the "neighbors of the neighbors," mentioned in Sec. 1, was introduced to 
obtain the transition (2.1) ~.- (3.1). 

Remark .  (1) The unit was assumed to be quadratic in Eqs. (3.3) and (3.4), the transition to a 
rectangular one was carried out by means of extrapolation with allowance for the values at the "test points." 

(2) The character of calculation is completely the same as in Sec. 4. 
4. Taking into A c c o u n t  t he  B o u n d a r y  Condi t ions .  In the adopted model, the boundary 

conditions are manifested in the values of the rigidities of the springs at the frontier unit's edge facing 
the boundary, so that it is required to find the coefficients G by which the values of the rigidities of the 
boundary unit's springs are multiplied under the given boundary conditions. We solve this problem with the 
requirement that Eqs. (3.2)-(3.4) take the form of Eq. (3.1) at the plate boundary as the dimensions of the 
unit tend to zero. We denote the value of the coefficients by G2 for the springs C1 and C2, by G1 for the 
springs S1 and $2, and by G3 and G4 for the springs $3, $4, and $5. We shall illustrate the calculation. The 
unit is assumed to be square (dr = dy = d). Let unit No. 7 be the boundary, and the boundary is on the 
right. We write Eqs. (3.2)-(3.4) for this unit and make a preliminary analysis of each equation separately. 

(i) Equation (3.2) consists of 14 terms containing coordinates with the numbers 28, 16, 4, 7, 31, 19, 
18, 29, 5, 30, 6, 32, 8, and 21; this implies six displacements W of unit No. 7 and its neighbors, four rotations 
U about the X axis and four rotations V about the Y axis (the number 21 appears because of the different 
springs on the left and on the right of unit No. 7). The components of the matrix B of Eq. (3.2) have the 
following values: 

B(19,28) = B(19,4) = - C 2 ,  B(19,7) = B(19,31) = - 2 - C 1 ,  B(19,16) = - 2 . C 1 ,  

B(19,32) = -B(19 ,8)  = C1. d, B(19,18) = C1-d, B(19,29) = -B(19,5)  = C2-d/2,  

B(19,30) = B(19,6) = C2-d/2,  B(19, 19) = 6. C1 + 2. C2 + 2(C1 + C2). G2, (4.1) 

B(19,21) = (1 - G2)(C1 + C2)d. 

(2) Equation (3.3) contains 18 terms with the coordinates 20, 32, 8, 62, 71, 29, 5, 17, 59, 68, 56, 53, 
30, 6, 31, 7, 28, and 4; twelve of them are the rotations about X, four are the displacements W (the numbers 
31, 7, 28, and 4), which are the consequence of the rotations of unit No. 7 about the X axis, and two (the 
numbers 6 and 30) are the rotations about Y, which are the consequence of the rotation of unit No. 7 about 
X. The components of the matrix B of Eq. (3.3) have the following values: 

B(20,32) = B(20,8) = - 4 h  2- St/9 + C l - d 2 / 2 ,  B(20,31) = -B(20,7)  = - C 1 -  d, 

B(20, 62) = B(20, 71') = - 2 .  $3- h2/9, B(20, 29) = C2. d2/4 - 2. $2. h2/9, 

B(20,28) = -B(20,4)  = - C 2 - d / 2 ,  B(20,5) = C 2 - d 2 / 4 -  2. $2. h2/9, 

B(20, 17) = - 2 .  C1. d/9, B(20,59) = B(20,68) = - 2 -  $4. h2/9, 

(4.2) 
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B(20,56) = B(20,53) = - 2 .  $5-h2 /9 ,  B(20,30) = - B ( 2 0 , 6 )  = C2.  d2/4. 

B(20,20) = C1 �9 d 2 + 2.  CI(I  + G2)d2/9 + 8. S1 �9 h2/9 + C2(1 + G2)d2/2 

+4(1 + G1)S2 �9 h2/9 + 4($3 + $4 + $5)h2/9 + 4($4 + $5)G4 �9 h"/9. 

(3) Equation (3.4) contains 17 terms with the coordinates 19, 33, 9, 18, 21, 30, 6, 15, 27, 3, 57, 54, 29. 
5, 16, 4, and 28; eleven of t hem are the rotations V about the Y axis, four are the displacements W, and two 
are the rotations U about  the  X axis. The  components of the matr ix B of Eq. (3.4) have the following values: 

B(21, 19) = - ( G 2  - 1)(C1 + C2)d, B(21, 33) = S(21,  9) = ( -2 /9 )C1  �9 d 2, 

B(21,18) = - ( 4 / 9 ) h  2- S1 + ( 1 / 2 ) C l . d  2, B(21,30) = B(21,6)  = (C2/4)d 2 - 2.  $2- h2/9, 

B(21,15) = - 2 - $ 3 .  h2/9, B(21,27) = B(21,3) = - 2 .  $4 .  h2/9, (4.3) 

B(21,57) = B(21,54) = - 2 -  $5.  h~/9, B(21,29) = - B ( 2 1 , 5 )  = C2.  d2/4, 

B(21, 16) = - C 1 - d ,  B(21,4) = B(21,28) = - C 2 .  d/2, 

B(21,21) = 2h2($3 + 2 . $ 4 + 2 . $ 5 ) ( 1  + G3)/9 + 4 .  SI(1 + G1)h2/9 

+ C 1 .  d2(1 + G2)/2  + 4- C1.  d2/9 + C2.  d2(1 + G2)/2 + 4- $2(1 + G1)h2/9. 

Let d ---* 0; it is necessary to find the rigidities of the boundary  springs by Eqs. (3.2)-(3.4). We turn 
to Eq. (3.2). Let the coordinates of the center of unit  No. 7 be x and y, q(19) = W(x,y) ,  q(20) = U(x,y) = 
Wv(z,y),  and q(21) = V(x,y)  = -Ws(x ,y ) .  We present the generalized coordinates q of the surrounding 
units in the form of power series with respect to the powers of dx and dy (see Sec. 3); the components B(i, k) 
for this case are given in formulas (4.1). After simplifications the equation takes the form 

1 2 . G 2 .  W + 6 - G 2 .  

Similarly, subst i tut ing the  values of (4.2) into Eq. (3.3) and representing the generalized coordinates of the 
units that  are the neighbors of unit  No. 7 as a power series, we obtain 

(22.6666- G2 - 0.7776. G4 - 0.888. G1)Woj + lOWl,ld - 4W0,ad 2 + (-1.3333W3,1 - 4W1,3)d 3 

+(0.14444W0,s + 0.5W4,1 + W2,3)d 4 = ~.o2hd4Wo,l/D. (4.5) 

Similarly, Eq. (3.4) is reduced to the form 

- 7 2 -  G2- W]d + W~,0(-12.8 - G1 - 36- G2 + 0.2. G3) - 12.4W~,0d + 5.3333W1,2d 2 

+(1.1333W4,0 + 4.2222W2,2 + Wo,4)d 3 + (-0.5Ws,0 - W3,2 - 0.0555W1,4)d 4 = -txz2hd4Wl,o/D. (4.6) 

We recall that  in formulas (4.4)-(4.6), W is the displacement of the center of the frontier unit. Naturally, W 
and the derivatives should be expressed via the value at the plate boundary, which is at a distance of d/2 
from the center of unit  No. 7. Again, we do it by means of power series. The  boundary is on the right of unit 
No. 7 for x = r. We introduce the following notation: W(r ,y )  = W ~ For the center of unit  No. 7 (Fig. 1), 
one can write, to within an a c c u r ~ y  comparable with the right-hand side of the equations, 

W = W ~ - W~ + wg, od2/8-  Wa~ + WO, od4/(24- 1 6 ) -  W2,odS/(120 �9 32), 

W,,o = W ~  - wgod/2 + WJod2/s- WOod /4s + W2o /(24.16), (4.7) 

W,,l= W:,,, Ws,o= W:,o, w3, = w2, , . . . .  

We consider the case of a freely supported plate having an exact solution [4, 5]. We assume a "pure" case 
where the responses of the support  have no component in the plate plane. At the boundary, we have r~ u. = 0, 
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and hence Wl,l(r, y) = 0. Generally, this equality is not used as the boundary condition; here its consequence 
IV1.2 = 0 appears during the solution [see below the analysis of the results (4.10) and (4.14)]. In what follows. 
we use the boundary conditions W(r ,y)  = W2,0(r,y) -- 0 and their consequences WoA(r,y) = W2,1(r,y) = 
W2,2(r,y) . . . . .  0, because dWi,k(r,y)/dy = (Wi,k+l(x, Y))z=r. We begin with formula (4.6), because it is 
the most important  [this formula concerns rotations about the Y axis, which are different from zero at the 
boundary of the supported plate; formulas (4.4) and (4.5) refer to the displacements and rotations about X. 
which are infinitesimal at the boundary]. Taking into account the boundary conditions of a supported plate 
and their consequences W ~ = W~ = W0~ = W~ = . . . .  0 and substi tut ing the values of (4.7)into formula 
(4.6), we obtain 

( -12 .8 .  G1 + 0.2-G3)W~ + [ ( - 3 .  G2 + ( -12 .8 .  G1 + 0 .2 -G3) /8  + 6.2)W~ + 5.3333W~ 2 

+[9- G2/16 - ( - 12 .8 .  G1 + 0.2- G3)/48 - 0.4167]W~ ds + [(-0.06458.  G2 

+( -12 .8 -  G1 + 0.2. G3)/384 - 0.8083)W~ - 2.4444W~ - 0.5555W~ 4 = -pw2hd4W~ (4.8) 

We analyze (4.8). Let d ~ 0. Assuming that  the values of Wl~ Wl~ W3~ Wh~ W~ and W~ differ from 
zero, we have 

- 1 2 . 8 .  G1 + 0.2. G3 = 0; (4.9) 

(--3- G2 + ( -12 .8 -  G1 + 0.2. G3)/8 + 6.2)W3~ + 5.3333W~2 = 0; (4.10) 

(-0.06458. G2 + ( -12 .8-  G1 + 0 . 2 - G 3 ) / 3 8 4 -  0.8083)W2, o - 2.4444W~ - 0.5555W~ = -pw2hW~ (4.11) 

W2,o = o .  (4.12) 

As is known [4], the value of (4.12) corresponds to the exact solution. It follows that:  
(l) G1 = G3 = 0, which is quite natural, because there is no bending moment  at the boundary; 
(2) From formula (4.10), we have ( - 3 -  G2 + 6.2)W2,0 + 5.3333W~ = 0. Taking into account the independent 
results (4.13) and (4.14), where the expression in brackets should be equal to zero for d s, we obtain W20 = 

= 0, and hence = 0 and W~ = 0; these values were used in (4.11); 
(3) With allowance for the  aforesaid, from formula (4.11) we have -(0.06458 �9 G2 + 0.8083)W~ = 

To reach the coincidence with (3.1), the coefficient at W~ should equal unity; in this case, G2 = 2.968. 
We substi tute the  values (4.7), the boundary conditions, and the just  obtained value of G2 into Eq. 

(4.5). Since the boundary  behaves as a rigid restraint in rotations about the X axis, we have GI = 2. The 
equation takes the form 

(-22.7493+0.3888"G4)W~176176 +0.1444WOsd 4 = pJhd4W~ (4.13) 

At the boundary x = r, we have W0~ = W0~ = 0. It is evident tha t  vanishing the expressions in 
the first two brackets is required. Vanishing the first brackets gives a value of G4 = 58.5116. With allowance 
for Eq. (4.10) and the  remarks on the derivatives with respect to y at the boundary, vanishing the second 
brackets produces W3~ = W~, 3 = 0. 

Thus, the desired coefficients are found. We should analyze Eq. (4.4). Subst i tut ing (4.7) into (4.4) and 
taking into consideration the  boundary conditions, we obtain 

( ( G 2 -  1)W3~ - W~ 3 + ( 1 -  3-G2/32)W2,0 d4 = pw2hd4W~ (4.14) 

Taking into account the previous results, we see that  the equation is satisfied. The  analysis is completed. 
Among the results obtained,  W~,o!r ,y) = 0 is noteworthy. It means that  the transverse force is equal to 
zero at the boundary. Apparently,  it is admissible, because " . . .  being applied to an edge lying on a support,  
transverse forces exert a certain effect only on the magnitude of the basic responses of the plate and on the 
distribution of the stresses in it near this edge" [4, p. 305]. 
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TABLE 1 
Values of the First Ten Frequencies of a Supported Square Plate 

for Different Numbers of Partitions into Elastically Connected Units 

N 

2 x 2 52.2689 50.6050 48.9105 

3 x 3 121.2279 109.4774 106.5355 

4x4 

5 x 5  

6 x 6  

7 X 7  

8 x 8  

9 x 9  

I0 x I0 

Exact  value 

139.3658 

183.0714 

208.2786 

220.8399 

228.7611 

234.1175 

237.9656 

256.6097 

135.8520 127.1553 

48.5983 

98.8394 

121.9488 

46.4398 

79.9424 

116.7213 

45.4073 

75.8424 

105.0009 

179.9596 160.5345 149.5438 139.3917 114.7380 

206.9270 173.8288 158.7100 147.9784 118.4440 

218.8231 152.9525 120.6529 

225.1277 

163.2577 

166.0366 

167.9686 

169.3859 

177.6529 

228.9915 

231.6515 

156.0852 122.0888 

158.2592 123.1168 

159.8507 

167.7833 246.7401 

179.8524 

183.3627 

185.8173 

187.6468 

197.3921 

123.8830 

128.3048 

35.0027 30.2733 30.2716 15.7902 

67.7897 63.5578 44.9527 20.9561 

85.3219 72.3561 47.2248 20.0488 

90.4010 73.8870 47.6664 19.9033 

92.4402 74.9737 48.0864 19.8417 

93.9923 76.0880 48.3702 19.8408 

95.0193 76.6779 48.5535 19.8100 

95.7284 77.0773 48.6832 19.7865 

96.2389 77.3630 48.7794 19.7706 

98.6960 78.9568 49.3480 19.7392 

The values obtained for G1-G4 were introduced into the program. Table 1, which lists theoretical [6] 
and calculation results for the  dimensionless frequencies ~ = coa2(ph/D) 1/2 are given for a supported square 
plate with edge a for various partit ions of the plate into unit,  shows the accuracy of calculation and the 
convergence of the results 

The same method  was employed in the case of a restrained boundary. The  approach in which the 
calculated contour of the  plate  was at a distance equal to half the length of the  uni t  from the actual contour 
of restraint is more precise. For this case, G1 = G2 = 1, G3 = 2, and G4 = 2.2874. The  accuracy is the same 
as in the case of a suppor ted  plate. A comparison is made with the COSMOS calculation with a 10 x 10 
partition in both cases. For the  lowest frequencies, the considered approach is more accurate. 

The case of a free boundary is the simplest, because there are no "springs" at the boundary. The 
solution is more correct if the  part i t ion boundary is extended beyond the plate at a distance equal to half the 
length of the unit.  

The frequencies and amplitude-frequency characteristics of a rectangular glass textoli te plate attached 
at four and six points were studied experimentally and computed in [7]. Agreement  of the  results is quite 
satisfactory. 

5. C la s s i f i c a t i on  a n d  t h e  Value .  Our approach has common features with the finite-difference and 
finite-element methods (FDM and FEM), but is not a variant of the first or the second. We make an a t tempt  
to justify this s ta tement .  First  of all, we would like to make the following remark, which is of the fundamental  
character. As is known, in the  adopted theory of thin plates, in deriving the differential equation of motion 
of a plate the stress-tensor components  rxz and ru= are ignored, and it is quite natural  owing to the adopted 
expression of the strain-tensor components via the displacement W. Ignoring is reached by expressing these 
components via other components  in the two equations 

Oa= Orxy Orz= c3ry= 0% 
=o,  + 

c3r,= Or, y O~z 02W 

+ W + oz = -Po-i  

0ryz = 0, 
Oz 

and by substi tut ing into the  third equation, so that  one differential equation is derived (in the FDM, this 
equation produces a system of algebraic finite-difference equations). Our approach does not permit  us to do 
this. In our approach, the  springs that  should be presented explicitly, namely, via their rigidities and the 
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attachment points, correspond to the stress-tensor components. But it is natural that the departure from 
the adopted theory appeared in solving this problem, whereas the FDM and the FEM are fully guided by 
this theory. This made it necessary to take into account the interaction at the corners of the units and the 
"long-range action," i.e., at a definite stage our approach deviates from the adopted theory. But later the 
methods "converge" again: each of three equations in our approach takes the form of the differential equation 
of a plate (we recall that  this is reached in the limit for an infinitely increasing number of units in the process 
of determination of the rigidities of the springs). 

We have already mentioned that there is a formal need to introduce the "long-range actions," because 
it was impossible to reduce (within the limit) algebraic equations to a differential equation of a continuous 
plate ignoring this introduction. However, this technique also has a definite physical meaning. Indeed, the 
"springs" simulate the total elasticity of a given element (say, unit No. 7 in Fig. 1) and its surroundings. It 
seems completely natural to simulate this elasticity by a method of successive refinements: first, to use four 
neighbors that are in contact with its edges as the surrounding of this unit (the first approximation) and then 
to include the units that  are in contact with unit No. 7 only at the corners (the second approximation), and, 
finally, to include the outer ring in Fig. 1 in this surrounding (the third approximation). The inclusion of the 
following ring embracing the previous ring is possible (the fourth approximation) by introducing appropriate 
springs; the rigidities of these springs are found from the requirement that the second terms on the left-hand 
side of Eqs. (3.5) and (3.6) vanish. One can continue unboundedly, expanding the region forming the elastic 
interaction of the given unit with the surrounding material of the plate. 

We continue a comparison with the known methods. 
I. Common with the FEM is partition into units. However, in the FEM the units are deformable and 

should be boundary-shaxed; in our approach, the units are rigid, and they are connected to each other and 
to the boundary by springs, and conjugation with the neighboring elements is not needed. Consequently, the 
mathematical models axe developed differently.. 

2. The similarity to the FDM consists in the use of Taylor series and the fact that the finite differences 
in the FDM and the increment of the displacements W of the neighboring elements in our approach are as 
a matter of fact the same. But the similarity is limited by these, purely external features. In essence, the 
methods are different. Indeed, the FDM originates from Eq. (3.1), and a system of N algebraic equations is 
obtained for the determination of the displacement of N nodes in partitioning into N nodes. In our approach, 
system (2.1) of 3N linearly independent equations is initial for the determination of 3N unknowns, namely, 
the displacements and rotations of N elements. Here the rigidities of the springs are found from the condition 
that each of three equations in (2.1) coincides to within the limit with (3.1). It is difficult to present how it is 
possible to formally reduce one problem to the other, the FDM to our approach [taking into account that 3N 
equations of (2.1) are independent, whereas Eq. (3.1) for W and the corresponding two equations for W~ and 
Wy can hardly be reduced to 3N independent algebraic equations, if at all]. As for the inclusions of Wx and 
Wy in the number of unknowns in our approach, it is important for a study of the stress state and, probably, 
increases the computational accuracy. In addition, our approach is able not to use the second ring of the 
surrounding: if one removes the appropriate springs $3, $4, and $5, one obtains the second approximation 
which is quite acceptable in accuracy, whereas the FDM cannot work without this ring. And one more example. 
We consider the boundary conditions in our approach and in the FDM in the case of a free boundary. In 
the FDM, the boundary conditions not only require the entry to the second ring of the surrounding of the 
boundary unit, but also are expressed in a rather complicated way, whereas in the proposed approach, the 
springs at the free boundary of the boundary unit are just removed and their rigidities are equated to zero. 

3. The important difference between our approach and the FDM and FEM is the clear physical meaning. 
4. The possibilities of the methods also differ. The proposed approach allows one to locate the point 

mass not only in the center of the unit, but also at any point of the unit by adding three rows in the matrix 
A. In real problems, the "rigid" boundary conditions of the usual standards should be often "weakened." In 
the given approach, it is done rather simply, by changing the coefficients G on the necessary section of the 
boundary. 

The approach considered is extended to the case of large sags. For this purpose, it is required to return 
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to the units the "taken away" degrees of freedom, namely, the displacements along X and Y (and rotations 
in the XY plane for some problems). The springs remain the same, but their declination should be taken into 
account, and therefore the components of the matrix B depend on the displacements and rotations of tile 
unit. Also, the method can be extended to the case of a thick plate. To do this, it is necessary: 

(1) To present a thick plate as a set of thin plates divided into elastically connected undeformable units 
and to introduce the elastic connection between the units of various plates; 

(2) To give three additional degrees of freedom to each unit; 
(3) To take into account the additionally introduced linkages (compared to a unitary thin plate) in the 

second approximation of the proposed approach. 
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